Luapunov Exponents Vary Continuously With Respect to Parameter

  • Published:

Lyapunov Exponents Everywhere and Rigidity

  • 188 Accesses

  • 1 Citations

  • Metrics details

Abstract

In the present work, we obtain rigidity results analyzing the set of regular points, in the sense of Oseledec's Theorem. It is presented a study on the possibility of Anosov diffeomorphisms having all Lyapunov exponents defined everywhere. We prove that this condition implies local rigidity of an Anosov automorphism of the torus \(\mathbb {T}^{d}, d \geq 3,\) C 1 −close to a linear automorphism diagonalizable over \(\mathbb {R}\) and such that its characteristic polynomial is irreducible over \(\mathbb {Q}.\)

Access options

Buy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (Indonesia)

References

  1. Aoki N., Hiraide K. Topological theory of dynamical systems. Mathematical library, North Holland; 1994. MR 95m:58095.

  2. Baraviera A., Bonatti C. Removing zero Lyapunov exponents. Ergodic Theory Dyn Syst 2003;23:1655–1670.

    MathSciNet  Article  Google Scholar

  3. Barreira L., Pesin Y. a., Vol. 23. Lyapunov exponents and smooth ergodic theory, Univ. Lect. Series. Providence: American Mathematical Society; 2002.

    Google Scholar

  4. Barreira L., Pesin Y. Nonuniform hyperbolicity: dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge Univ. Press; 2007.

    Book  Google Scholar

  5. Bowen R. Periodic points and measures for axiom a diffeomorphisms. Trans Am Math Soc 1971;154:377–397.

    MathSciNet  MATH  Google Scholar

  6. Bowen R., Vol. 470. Equilibrium states and the ergodic theory of Anosov diffeomorphisms Lecture Notes in Mathematics. Berlin: Springer; 1975.

    Book  Google Scholar

  7. Brin M., Vol. 23. On dynamical coherence. Cambridge: Cambridge Univ Press; 2003, pp. 395–401.

    MATH  Google Scholar

  8. Fisher T., Potrie R, Sambarino M. Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov. Math Z 2014;278(1-2): 149–168.

    MathSciNet  Article  Google Scholar

  9. Franks J. Anosov diffeomorphisms on tori. Trans Am Math Soc 1969; 145:117–124.

    MathSciNet  Article  Google Scholar

  10. Gogolev A. Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori. J Modern Dyn 2008;2(4):645–700.

    MathSciNet  Article  Google Scholar

  11. Gogolev A. How typical are pathological foliations in partially hyperbolic dynamics: an example. Israel J Math 2012;187:493–507.

    MathSciNet  Article  Google Scholar

  12. Gogolev A. Bootstrap for local rigidity of Anosov automorphisms of the 3-torus. Comm Math Phys 2017;352(2):439–455.

    MathSciNet  Article  Google Scholar

  13. Gogolev A., Guysinsky M. C 1 − Differentiable conjugacy on three dimensional torus. DCDS-A 2008;22(1/2):183–200.

    Article  Google Scholar

  14. Hammerlindl A. Leaf conjugacies on the torus. Ergodic Theory Dyn Syst 2013;33(3):896–933.

    MathSciNet  Article  Google Scholar

  15. Hu H., Hua Y., Wu W. Unstable entropies and variational principle for partially hyperbolic diffeomorphisms. Adv Math 2017;321:31–68.

    MathSciNet  Article  Google Scholar

  16. Journé J-L. A regularity lemma for functions of several variables. Rev Mat Iber 1988;4:187–193.

    MathSciNet  Article  Google Scholar

  17. Katok A, Hasselblat B. Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its applications. 54.

  18. Livsic A. Cohomology of dynamical systems. Math USSR-Izv 1972; 6:1278–1301.

    Article  Google Scholar

  19. de la Llave R. Smooth conjugacy and SRB measures for uniformly and nonuniformly systems. Comm Math Phys 1992;150(2):289–320.

    MathSciNet  Article  Google Scholar

  20. Micena F., Tahzibi A. Regularity of foliation and Lyapunov exponents of partially hyperbolic dynamics on 3 −torus. Nonlinearity 2013;26(4):1071–1082.

    MathSciNet  Article  Google Scholar

  21. Micena F., Tahzibi A. A note on rigidity of Anosov diffeomorphism of the three torus. Proc Am Math Soc 2019;147(6):2453–2463.

    MathSciNet  Article  Google Scholar

  22. Oseledets V. Multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 1968;19:197–221.

    MATH  Google Scholar

  23. Pesin Y. Lectures on partial hyperbolicity and stable ergodicity. European Mathematical Society; 2004.

  24. Saghin R., Yang J. Lyapunov exponents and rigidity of Anosov automorphisms and skew products. Advances in Mathematics. 2019;355.

  25. Viana M. Lectures on Lyapunov exponents. Cambridge: Cambridge University Press; 2014.

    Book  Google Scholar

Download references

Acknowledgements

F. Micena appreciates the unconditional support of his family. Also, Micena is grateful to Rafael de la Llave for the opportunity to write an article with him. The authors thank the anonymous referees for their suggestions and valuable comments.

Funding

R.L. was partially supported by NSF grant DMS-1800241.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Fernando Pereira Micena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Micena, F.P., Llave, R.d.l. Lyapunov Exponents Everywhere and Rigidity. J Dyn Control Syst 27, 819–831 (2021). https://doi.org/10.1007/s10883-021-09563-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s10883-021-09563-0

Keywords

  • Lyapunov exponents
  • Anosov diffeomorphisms
  • Rigidity

Mathematics Subject Classification (2010)

  • MSC 37D20
  • MSC 37D25

rochanoreed48.blogspot.com

Source: https://link.springer.com/article/10.1007/s10883-021-09563-0

0 Response to "Luapunov Exponents Vary Continuously With Respect to Parameter"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel